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Abstract 
 

A common problem faced in the design of an object-
oriented simulation is that there are many different 
groups of end users of the simulation framework. Each 
group invariably has a different computer platform on 
which to run the simulation. In an attempt to satisfy all 
of these different groups, a simulation framework 
should be designed to be portable so that it can be op-
erated on as many different platforms as possible. The 
purpose of this paper is to describe several designs that 
isolate the framework from the platform dependent 
services required by a simulation.* 

Introduction 

Like most complex applications, a flight simulation 
framework requires a large amount of operating system 
support to perform its tasks. POSIX, the Portable Op-
erating System Interface, is a standard intended to al-
low an application to move from one operating system 
to another by simply recompiling it [1]. POSIX is an 
evolving, growing standard that provides the same 
interface to system calls on operating systems that 
support the standard. There are three problems in-
volved with relying on POSIX to provide platform 
independence:  
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1) Many platforms do not have POSIX support.  

2) Some platforms claim to have POSIX compliance 
when they only support a minimal POSIX imple-
mentation. 

3) For a given platform, there may be platform spe-
cific services that are not provided in POSIX that 
could be taken advantage of by a simulation 
framework.  

Until POSIX support is universal and completely sup-
ported by most operating systems, another solution to 
create portable a simulation framework is required. 

To provide portability, an object-oriented simulation 
framework must address three issues. First, the frame-
work must encapsulate the behaviors of operating sys-
tems and real-time environments by using abstraction 
[2] to define interfaces for platform dependent func-
tions. Next, the framework cannot be coupled to any 
simulation hardware. The framework should isolate 
complex simulation models from the simulator hard-
ware interfaces. By de-coupling the framework from 
the hardware, the framework can run on platforms 
connected to different hardware devices or no hard-
ware devices at all. Finally, if a framework uses a 
Graphical User Interface (GUI) as a means to control 
the simulation during execution, the framework cannot 
be coupled to the GUI. This provides the greatest 
flexibility for the system as a whole.  

The remainder of this paper will discuss each of these 
issues and how they were dealt with in the Langley 



2 
American Institute of Aeronautics and Astronautics 

Standard Real-Time Simulation in C++ (LaSRS++) 
Application Framework. LaSRS++ provides a power-
ful object-oriented framework for dynamic vehicle 
simulation in real-time [3]. The framework’s object-
oriented design makes the software extremely flexible, 
easily maintainable, and provides a high degree of 
reuse. The LaSRS++ framework currently supports 
hard real-time simulation on the SGI Onyx and the 
Convex C3800 platforms. The framework has also 
been run in a soft real-time mode on SGIs running Irix, 
Sun workstations running SunOS and Solaris, IBM 
RS6000s running AIX, and IBM PCs running Linux 
and Microsoft NT. 

The abstractions presented in this paper are the prod-
uct of an iterative object-oriented design process. The 
designs provide decoupled, unit-testable, and complete  
interfaces to platform specific resources. The abstrac-
tions are intended to simplify the complexity of porting 
a simulation framework to new platforms. 

Platform Dependent Services 

A large number of operating system services are used 
by a simulation framework to perform real-time simu-
lation. A framework must address scheduling, timing, 
data sharing, synchronization, I/O, and many other 
problems. Operating system services provide solutions 
to these problems but directly tie the framework to a 
platform. A framework must use a design that isolates 
operating system implementation details from the 
framework. Such a design allows the framework to use 
timers, schedulers, shared memory, semaphores, and 
other operating system resources in a portable fashion. 
LaSRS++ uses an elegant design employing the Ab-
stract Factory, Bridge, and Singleton design patterns to 
completely isolate the framework from the implemen-
tation details  required to use operating  system ser-
vices [4]. 

The design will be described using two common oper-
ating system services, shared memory and semaphores.  
Both of these services are commonly used in simula-
tion frameworks, and the required system calls  differ 
greatly from platform to platform. 

 

 

Shared Memory 

Most modern operating systems provide a means to 
map memory into the memory spaces of two or more 
processes at once thereby allowing the processes to 
share data. This mapping is known as shared memory. 
The system calls used to create and access a shared 
memory segment vary from platform to platform. Us-
ing object-oriented techniques, it is possible to present 
users on all platforms with a common interface to 
shared memory but allow the actual low-level imple-
mentation to vary according to the platform being 
used. This is accomplished by using several different 
object-oriented design patterns. Design patterns de-
scribe simple and elegant solutions to specific prob-
lems in object-oriented software design.  

Figure 1 uses the Unified Modeling Language (UML) 
to show the class diagram for the shared memory inter-
face software.  

Bridge Pattern 

The Bridge pattern decouples an abstraction from its 
implementation.2 This design uses the Bridge pattern 
to isolate client code from the platform specific details 
of a specific implementation. The approach is to have 
clients use an abstraction object that forwards its pub-
lic member function class to a hidden platform specific 
implementation object. The abstraction object uses the 
implementation object through the pure polymorphic 
interface defined by the abstract implementation base 
class. In this case, a shared memory interface object 
(SharedMemory) interacts with a platform specific 
shared memory implementation object (SharedMem-
oryImpl) through a polymorphic interface. An appro-
priate concrete implementation class is defined for 
each platform on which the simulation framework is 
executed upon. The appropriate concrete implementa-
tion object for a given platform is selected at run-time.  

Abstract Factory Pattern 

The Abstract Factory pattern is used to create the cor-
rect instance of the platform specific shared memory 
implementation object at run time. This creational pat-
tern provides an interface for creating families of re-
lated objects without specifying their concrete classes. 
In this case, the family of related objects are the plat-
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form specific implementation objects. The abstract 
factory object (SharedMemoryImplFactory) contains 
knowledge of the specific platform that is being used. 
The constructor for the shared memory interface object 
invokes the makeSharedMemoryImpl member function 
of the abstract factory object. This member function 
uses knowledge of the specific platform to return the 
appropriate implementation object for the given plat-
form. This specific implementation object is stored as 
a hidden attribute of the shared memory interface ob-
ject. 

Singleton Pattern 

The Singleton creational pattern is used whenever it is 
necessary to ensure a class only has one instance, and 
provide a global point of access to the single instance. 
The shared memory interface class and the abstract 
factory class are implemented as singletons to provide 
a global point of access for creating and accessing a 
shared memory space. 

Design Advantages 

This design has several advantages that address the 
issues of portability and maintainability: 

1. Client code is de-coupled from the platform spe-
cific shared memory implementation details. This 
de-coupling allows changes in the shared memory 
implementation classes to have no impact on the 
client code; i.e., the client code does not need to 
be recompiled if the implementation changes. By 
coupling client code only to a common interface, 
the client code becomes platform independent. 
This allows client code to be portable to any plat-
form supported by the shared memory interface 
class. 

2. Only a single class needs to be written to support 
a new platform. Adding support for a new plat-
form involves two steps: 

(a) Write a new shared memory implementation 
class that interfaces with the platform specific 
shared memory routines 

(b) Add to the Shared memory implementation 
abstract factory the capability to create the 
new shared memory implementation object 

Figure 1 – Shared Memory Interface 
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3. Creation of platform specific objects can be iso-
lated to a single abstract factory object. The 
shared memory interface class only references the 
abstract shared memory base class. All concrete 
implementation details are confined to the imple-
mentation abstract factory. 

4. The design is generic and can be applied to other 
operating system services. The following section 
describes how the design was applied to another 
important operating system service - semaphores. 

It is important to note that the concrete implementation 
classes cannot usually be compiled on any platform 
other than the one the class is intended. Makefile di-
rectives are the most common method of dealing with 
this issue.  

Semaphores 

A semaphore is a synchronization object that maintains 
a count between zero and a specified maximum value. 

The count is decremented every time a thread or proc-
ess “acquires” the semaphore object and incremented 
every time a thread or process “releases” the sema-
phore. When the count reaches zero, no more threads 
or processes can successfully acquire the semaphore 
and will not proceed until it can. Semaphores are use-
ful in controlling shared resources and synchronizing 
multiple threads or processes. 

Figure 2 shows the class diagram for the semaphore 
interface software as implemented in LaSRS++. The 
semaphore interface software design uses the same 
patterns as found in the shared memory interface soft-
ware. The only difference is that the System V imple-
mentation class is an abstract class rather than  a con-
crete class. Two new concrete classes derive from the 
SystemVSemaphoreImpl class. These concrete classes 
provide the implementation details for these two plat-
forms that are different among the two System V Unix 
platforms.  
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As described above, the design is very generic. 
LaSRS++ employs the design to handle several other 
operating system services. 

The Hardware Abstraction 

The hardware abstraction is composed of three main 
components: drivers, interfaces, and builders [5]. The 
drivers are the classes that actually transmit and re-
ceive data with the simulator hardware devices, the 
interfaces are communication classes that pass data 
between a simulation model and a driver, and the 
builders construct all of the appropriate drivers and 
interfaces as needed. Figure 3 demonstrates the rela-
tionships between the drivers, the interfaces, and the 
simulation models. 

Mediator Pattern 

The Mediator design pattern keeps classes from refer-
ring to each other explicitly and encapsulates how the 
set of classes interact.2 The strongest asset of the Me-
diator design pattern is that it completely decouples the 
two classes from each other. It should be used when-
ever two classes are unrelated but need to communi-
cate with each other.  

Drivers 

The driver classes are the classes that actually transmit 
and receive data with the simulator hardware devices. 
They typically contain buffers to hold the data that is 

transferred with the hardware and member functions to 
access or modify the data buffers. In the above dia-
gram, the class AbcHardwareDriver defines the two 
virtual functions declared in the abstract class Hard-
wareDriver. These virtual methods send and receive 
data. The class also defines methods that access and 
modify data transferred to and from the hardware. The 
driver class therefore provides the abstract interface of 
HardwareDriver and an interface specific to the “Abc” 
hardware. The driver classes are an implementation of 
the Bridge design pattern.  

Interfaces 

Interfaces are communication classes that pass data 
between the driver and the simulation models. The 
interface class also performs any manipulation of the 
data before transferring the data to its destination. The 
interface class is essentially a one way or two way data 
pump between the driver and the simulation model. In 
the illustration above, the AbcHardwareInterface is 
given a reference† to the AbcHardwareDriver and the 
XyzSimulationModel when it is instantiated. The class 
would then use the two references to transfer data be-
tween the two classes when appropriate. The interfaces 
are a variation of the Mediator design pattern. 

                                                           
† Unless stated otherwise, reference refers to both the 
reference and pointer types in C++. 
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Figure 3 - Drivers, Interfaces, and Simulation Models 
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Builders 

Builder classes construct all of the appropriate drivers 
as requested by the user and construct all of the corre-
sponding interfaces required by the simulation models. 
The builder classes provide an interface for creating 
the driver and interface classes without other simula-
tion classes having knowledge of the particular con-
crete classes. The builder classes are implemented 
using the Abstract Factory design pattern. 

Design Advantages 

The advantages of this design are: 

1. The simulation models are completely decoupled 
from the hardware driver classes. This allows the 
models to be tested with or without simulator 
hardware. The behavior of the simulation models 
with different inputs can be fully tested offline al-
lowing comprehensive analysis of performance 
without using valuable simulator hardware re-
sources. Once the performance of a model has 
been validated, the hardware inputs/outputs can be 
used to validate the model’s performance in the 
simulation. This minimizes the validation required 
of new models. The decoupled simulation models 
also remain portable. A polymorphic class hierar-
chy allows different computation models to be in-
corporated into the simulation and use the existing 
hardware interface class without modification. 
The model classes may be exported to other sites 
without requiring any modifications for use. A 
model imported from another site can be 
“wrapped” in a class that has the interface re-
quired by the existing hardware interface, thereby 
quickly assimilating the new computational model 
into the simulation. 

2. Modifications to simulator hardware only require 
a change to the driver class. Many hardware de-
vices receive major and minor modifications over 
their lifetimes. Minor modifications are often 
changes to software, buffer sizes, etc. and require 
little or no change to the software used to commu-
nicate with the device. Major modifications may 
require a significant change to the software used 
to communicate with the device however. Because 

the driver encapsulates all of the code involved 
with direct hardware communication, the simula-
tion is completely isolated from the modifications. 

3. The hardware driver classes can be unit tested. 
Any modifications to a driver class can be tested 
without the simulation model. A diagnostic pro-
gram can be written that uses the driver to com-
municate with the hardware. The diagnostic pro-
gram serves two functions. It can be used to test 
any changes made to the driver program and it can 
be used to verify the operation of the hardware 
prior to use by the simulation. Software configura-
tion management eases the burden of testing the 
new driver class by allowing the user to verify that 
the hardware is operating correctly with a previous 
version of the driver before testing the new ver-
sion. (This is usually not possible when the hard-
ware has been modified).  

4. The driver and/or interface class may be used to 
emulate the hardware. Often a simulation uses 
real-world hardware like a flight management 
computer to assist in research or testing. A soft-
ware emulation of a hardware device can be 
placed in either the driver or interface class to al-
low the simulation to perform necessary commu-
nications with the emulated hardware when the 
real hardware is unavailable. The hardware emula-
tion may also be modified to conduct research ex-
periments. 

5. Changes to the models can not affect the commu-
nication between a driver and it’s respective 
hardware. A modification to a simulation model 
may result in bad data being transmitted to a 
hardware device, but it can not cause a connection 
loss or crash if the hardware interface class prop-
erly limits the data being sent to the hardware de-
vice. 

6.  The hardware interface classes are generally 
very trivial. The classes simply use the accessor 
and modifier methods of the driver class and the 
simulation model to transmit data. Any calcula-
tions required when manipulating the data can eas-
ily be verified through testing. 
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7. The hardware interface classes can often be re-
used by different simulation models without modi-
fication. If the models share a common base class 
and the hardware interface only uses a reference to 
the base simulation model then no modification is 
required for use with different simulation models. 

8. Hardware driver and interface classes are only 
used on platforms that support their use. If the 
framework is run on a platform that has no support 
for a particular hardware device, then the abstract 
factory builder class will not attempt to create 
these classes. The builder classes are the only 
class dependent upon hardware driver and inter-
face classes. Because only the builder classes are 
dependent on the hardware classes, the framework 
is both maintainable and portable.  

9. Only two classes need to be written to support a 
new hardware device. Adding support for a new 
hardware device involves three steps: 

(a) Write a new hardware driver class that com-
municates with the new hardware device 

(b) Write a new hardware interface class that 
transfers data between the driver and the 
simulation model as needed 

(c) Add the new classes to the abstract factory 
builder classes to create the new driver and 
interface as needed. 

GUI Isolation 

Simulation frameworks often use GUIs to control 
and/or monitor simulation states during execution. To 
ensure portability and maintainability, a framework 
cannot be coupled to the GUI. This provides the great-
est flexibility for the system as a whole.  

Two designs are available that allow a GUI to control 
a framework with minimal coupling. The first design 
involves using a shared memory segment as a means to 
allow the GUI access to simulation states [6]. This 
method requires the framework to instantiate all ob-
jects that are manipulated by the GUI into shared 
memory.  The GUI can then attach to the shared mem-
ory segment and manipulate objects using their public 
methods. The design has the drawback that it requires 

framework classes to be instantiated into shared mem-
ory. 

Another design involves creating a second thread to 
create and manage a GUI [7]. In this design a frame-
work class must create and start the new thread. The 
GUI is then able to monitor and/or control simulation 
states because it shares the same memory as the simu-
lation framework. Due to the fact that many GUI tool-
kits are not thread-safe, the GUI must be designed to 
only allow a single thread to execute function calls to 
the GUI toolkit. 

It should be noted that in both of these designs, the 
framework is de-coupled from the GUI while the GUI 
is directly coupled to the framework. All communica-
tion between the framework is unidirectional. The GUI 
monitors and controls simulation states. The frame-
work is completely unaware of the presence of the 
GUI. 

Determining which GUI library or toolkit to use is 
another difficult issue. Three options are available to a 
framework designer: 

1) Use the libraries that came with a plat-
form/operating system/compiler. 

2) Use commercial or free libraries from other 
sources. 

3) Develop a library suite for each of the platforms 
needed in house.  

Each option has its advantages and disadvantages. Us-
ing the libraries commonly found on a platform is an 
inexpensive solution but can limit portability.  For 
example, most UNIX platforms have native support for 
X windows and ship with other graphical libraries like 
Xt and Motif. If Motif is selected as the GUI library 
for a framework, then the framework is limited only to 
UNIX platforms that also support Motif.  

Using commercial libraries or free libraries is an excel-
lent alternative to using the libraries shipped with a 
platform. Problems may arise however in finding a 
product that supports all off the target platforms. Sup-
port problems may also impact the development of 
framework features. If errors are found in these prod-
ucts, development of new framework features or 
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framework corrections may not be possible until after 
the vendor addresses the problem. Another problem 
arises when the platform requires on operating system 
upgrade and an operating system compatible library is 
not available. 

Developing a library in house provides a framework 
staff with the greatest flexibility but has tremendous 
resource requirements until the libraries are full im-
plemented.  

The GUI toolkit used by LaSRS++ has undergone sev-
eral transitions since the framework was first created. 
Originally the framework was only run only on UNIX 
machines. The Motif library was used to develop a 
GUI to control the simulation while it was executing. 
The shared memory GUI design was used to allow the 
GUI to monitor and control the framework. Because 
Motif is not object-oriented, the GUI code base 
quickly became extremely large and awkward to main-
tain. The Motif library was abandoned in favor of an 
object-oriented toolkit called Amulet. The Amulet base 
GUI also used the shared memory design. Amulet is a 
GUI toolkit developed at Carnegie-Mellon University 
and supports almost every flavor of UNIX, Microsoft 
Windows, and even the Macintosh. The library was 
also freely downloadable over the Internet. Unfortu-
nately DARPA funding of the Amulet project ended, 
and the product is no longer being developed or sup-
ported by its creators. The loss of Amulet support was 
a mixed blessing – a new toolkit was selected that re-
quired the GUI to be rewritten yet again. The new 
toolkit provides a better object-oriented foundation 
than Amulet and has better performance. Currently, 
LaSRS++ uses the free GUI toolkit called gtk--, a 
GNU software package. The library is also object-
oriented and supports most UNIX platforms, Microsoft 
Windows, and the Macintosh. The LaSRS++ frame-
work was also modified to use the thread based GUI 
design. Because of the framework is de-coupled from 
the GUI, users have the option to run with either the 
Amulet based GUI or the gtk-- based GUI. This dem-
onstrates the importance of framework/GUI isolation. 
While the gtk-- based GUI was being developed, other 
framework users where continued to use the older 
GUI. This affords users the convenience of transition-
ing to the new GUI according to their timetable. 

Conclusions 

Design patterns were used to maximize code reuse 
while encapsulating implementation details within plat-
form specific classes. The Bridge, Factory, and Single-
ton patterns were used extensively throughout the de-
sign to achieve a portable framework. The Factory 
pattern allows the framework to know about abstract 
classes and nothing about the subclasses that define the 
platform specific operations. The pattern establishes an 
interface for creating subclasses without requiring any 
knowledge of the subclasses. The Bridge pattern de-
couples an abstraction from its implementation. This 
allows the abstraction and implementation to vary in-
dependently. The pattern provides flexibility in that the 
abstraction and implementation are in separate class 
hierarchies. The Singleton pattern ensures only one 
instance of a class exists and provides a global point of 
access to it. Essentially, the above patterns allow the 
entire body of code that composes a framework to be 
unaware of which platform the framework is operating 
on.  

Because the hardware interface is abstracted away in a 
manner that keeps the actual simulator hardware com-
munications hidden from the rest of the framework, the 
framework is a robust, portable, and easy to maintain 
simulation system. Continual reuse of the hardware 
abstraction ensures that new hardware interfaces can 
be easily added into the framework and that these in-
terfaces can be easily tested and debugged with or 
without the hardware.  

Isolation of the framework from the GUI provides the 
greatest flexibility when moving the framework to dif-
ferent platforms. In selecting a GUI library for use 
with a simulation framework, a designer must weigh 
the pros and cons of the aforementioned options and 
select the most appropriate solution for that particular 
environment.  

Although the designs presented in this paper were 
originally designed to support flight simulation at 
NASA Langley Research Center, the designs could be 
used in any object-oriented framework to heighten 
reuse, portability, and maintainability. 
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